Skip to main content

Performance Tuning

This document provides optimization recommendations for improving the performance of Simba Intelligence across its various components including AI processing, caching, database operations, and infrastructure deployment.

Overview

Simba Intelligence is a multi-layered AI-powered data engineering platform that processes natural language queries, manages multiple data sources, and provides real-time responses. Performance optimization focuses on several key areas:
  • AI/LLM Response Times - Reducing latency through semantic caching
  • Database Performance - Optimizing PostgreSQL and vector operations
  • Task Processing - Efficient background job handling with Celery
  • Caching Strategy - Multi-level caching with Redis
  • Infrastructure Scaling - Container resource management and Kubernetes optimization

AI and LLM Performance Optimization

Semantic Caching

The most impactful performance optimization is the Semantic Cache System, which dramatically reduces LLM API calls and response times. Key Benefits:
  • Reduces response times from seconds to milliseconds for similar queries
  • Significantly decreases LLM API costs
  • Improves user experience with near-instant responses for cached content
Configuration Recommendations:
# Optimize cache hit rates by configuring appropriate similarity thresholds
SEMANTIC_CACHE_SIMILARITY_THRESHOLD = 0.8  # Adjust based on use case
SEMANTIC_CACHE_MAX_ENTRIES = 10000  # Per user namespace
SEMANTIC_CACHE_TTL = 3600  # 1 hour default expiration
Cache Isolation Strategies:
  • Use item-specific caching for data source queries: cache.check_get_cache(query, item_id=source_id)
  • Implement global user caching for general queries: cache.check_get_cache(query)
  • Monitor cache hit rates to optimize similarity thresholds

LLM Provider Selection

Choose the optimal LLM provider based on performance characteristics: For Low Latency:
  • Google Vertex AI: Best for embedding generation and fast response times
  • Configure location-specific deployments: location: us-central1 for US users
For Cost Optimization:
  • Monitor token usage across providers
  • Use smaller models for simple queries
  • Implement request batching where possible
Provider-Specific Optimizations:
# Vertex AI Configuration
vertex_ai:
  location: "us-central1"  # Closest to your users
  model_name: "gemini-2.0-flash"  # Optimized for speed
  temperature: 0.3  # Lower for consistent responses

# Azure OpenAI Configuration  
azure_openai:
  api_version: "2023-05-15"  # Latest stable version
  max_tokens: 1000  # Limit to reduce latency
  temperature: 0.5

Caching Strategy

Redis Configuration

Redis serves as both the semantic cache backend and general application cache. Optimize Redis for your workload: Memory Optimization:
# redis.conf optimizations
maxmemory 2gb
maxmemory-policy allkeys-lru
tcp-keepalive 60
timeout 300
Connection Pooling:
# Configure connection pooling to handle concurrent requests
REDIS_CONNECTION_POOL_SIZE = 20
REDIS_CONNECTION_TIMEOUT = 10
REDIS_SOCKET_KEEPALIVE = True

Multi-Level Caching

Implement caching at multiple application layers:
  1. Semantic Cache - AI/LLM responses
  2. Query Results Cache - Database query results
  3. Session Cache - User authentication and permissions
  4. Metadata Cache - Data source schemas and configurations
Cache Warming Strategy:
# Pre-populate cache with common queries during low-traffic periods
def warm_cache():
    common_queries = get_popular_queries()
    for query in common_queries:
        if not cache.check_get_cache(query):
            response = generate_response(query)
            cache.update_cache(query, response)

Database Performance

PostgreSQL Optimization

Simba Intelligence uses PostgreSQL with the pgvector extension for vector similarity search. Connection and Memory Settings:
# postgresql.conf optimizations
shared_buffers = 256MB          # 25% of RAM
effective_cache_size = 1GB      # 75% of RAM  
work_mem = 4MB                  # Per connection
maintenance_work_mem = 64MB     # For maintenance operations
max_connections = 100           # Adjust based on load
Vector Search Optimization:
-- Create appropriate indexes for vector operations
CREATE INDEX CONCURRENTLY idx_embeddings_vector 
ON embeddings USING ivfflat (vector_column vector_cosine_ops) 
WITH (lists = 100);

-- Monitor and optimize vector queries
EXPLAIN (ANALYZE, BUFFERS) 
SELECT * FROM embeddings 
ORDER BY vector_column <=> query_vector 
LIMIT 10;
Query Performance Monitoring:
-- Enable slow query logging
log_statement = 'all'
log_min_duration_statement = 1000  -- Log queries > 1 second
log_line_prefix = '%t [%p]: [%l-1] user=%u,db=%d,app=%a,client=%h'

Database Connection Pooling

Use SQLAlchemy connection pooling for optimal database performance:
# Database configuration
SQLALCHEMY_ENGINE_OPTIONS = {
    'pool_size': 10,
    'max_overflow': 20,
    'pool_pre_ping': True,
    'pool_recycle': 3600,
    'connect_args': {
        'connect_timeout': 10,
        'application_name': 'simba-intelligence'
    }
}

Background Task Processing

Celery Optimization

Celery handles background AI processing and data operations. Optimize for your workload: Worker Configuration:
# celeryconfig.py
broker_url = 'redis://redis:6379/1'
result_backend = 'redis://redis:6379/2'

# Performance settings
task_acks_late = True
worker_prefetch_multiplier = 1  # For memory-intensive tasks
task_compression = 'gzip'
result_compression = 'gzip'

# Concurrency settings
worker_concurrency = 4  # CPU cores
worker_max_tasks_per_child = 1000
worker_disable_rate_limits = False
Task Routing:
# Route different task types to specialized workers
task_routes = {
    'simba_intelligence.tasks.llm_tasks': {'queue': 'llm_queue'},
    'simba_intelligence.tasks.data_processing': {'queue': 'data_queue'},
    'simba_intelligence.tasks.vector_tasks': {'queue': 'vector_queue'},
}
Task Optimization:
# Use task batching for efficiency
@celery_app.task(bind=True)
def process_batch_embeddings(self, texts_batch):
    """Process multiple texts in a single task to reduce overhead"""
    embeddings = []
    for text in texts_batch:
        embedding = generate_embedding(text)
        embeddings.append(embedding)
    return embeddings

Infrastructure and Deployment Optimization

Container Resource Management

Memory Allocation:
# Docker Compose resource limits
services:
  main-app:
    mem_limit: 2g
    memswap_limit: 2g
    
  celery-worker:
    mem_limit: 1g
    deploy:
      replicas: 3
      
  redis:
    mem_limit: 512m
    
  postgres-main:
    mem_limit: 1g
    shm_size: 256m  # Important for PostgreSQL
CPU Optimization:
# CPU limits and requests
resources:
  requests:
    cpu: 100m
    memory: 256Mi
  limits:
    cpu: 500m
    memory: 1Gi

Kubernetes Scaling

Horizontal Pod Autoscaler (HPA):
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: simba-intelligence-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: simba-intelligence-website
  minReplicas: 2
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
Pod Disruption Budget:
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
  name: simba-intelligence-pdb
spec:
  minAvailable: 50%
  selector:
    matchLabels:
      app: simba-intelligence

Load Balancer Configuration

GKE Backend Configuration:
apiVersion: cloud.google.com/v1
kind: BackendConfig
metadata:
  name: simba-intelligence-backend-config
spec:
  timeoutSec: 1800
  connectionDraining:
    drainingTimeoutSec: 1800
  healthCheck:
    checkIntervalSec: 10
    timeoutSec: 5
    healthyThreshold: 1
    unhealthyThreshold: 3

Monitoring and Performance Metrics

Key Performance Indicators

Monitor these critical metrics for optimal performance: Application Metrics:
  • AI/LLM response times and cache hit rates
  • Database query execution times
  • Celery task queue lengths and processing times
  • Memory and CPU utilization per container
Business Metrics:
  • Average query resolution time
  • User satisfaction scores from rating system
  • Data source connection success rates
  • Query success rates

Health Checks and Monitoring

Application Health Endpoints:
@app.route('/api/v1/healthz')
def health_check():
    checks = {
        'database': check_database_connection(),
        'redis': check_redis_connection(),
        'llm_providers': check_llm_providers(),
        'celery': check_celery_workers()
    }
    
    if all(checks.values()):
        return {'status': 'healthy', 'checks': checks}, 200
    else:
        return {'status': 'unhealthy', 'checks': checks}, 503
Kubernetes Health Checks:
livenessProbe:
  httpGet:
    path: /api/v1/healthz
    port: 5050
  initialDelaySeconds: 30
  periodSeconds: 10
  timeoutSeconds: 5

readinessProbe:
  httpGet:
    path: /api/v1/ready
    port: 5050
  initialDelaySeconds: 5
  periodSeconds: 5
  timeoutSeconds: 3

Troubleshooting Common Performance Issues

High Memory Usage

Symptoms:
  • Container restarts due to OOM kills
  • Slow response times
  • High swap usage
Solutions:
# Check memory usage patterns
docker stats --no-stream
kubectl top pods

# Analyze Python memory usage
python -m memory_profiler your_script.py

# Optimize garbage collection
export PYTHONMALLOC=malloc
export MALLOC_ARENA_MAX=2

Slow Query Performance

Symptoms:
  • Database connection pool exhaustion
  • High query execution times
  • User timeout errors
Diagnosis:
-- Check for slow queries
SELECT query, mean_exec_time, calls, total_exec_time 
FROM pg_stat_statements 
ORDER BY mean_exec_time DESC 
LIMIT 10;

-- Check for missing indexes
SELECT schemaname, tablename, attname 
FROM pg_stats 
WHERE schemaname NOT IN ('information_schema', 'pg_catalog') 
  AND n_distinct > 100 
  AND correlation < 0.1;

Cache Performance Issues

Low Cache Hit Rates:
# Monitor cache statistics
def get_cache_stats():
    info = redis_client.info('memory')
    keyspace = redis_client.info('keyspace')
    
    return {
        'memory_usage': info['used_memory_human'],
        'hit_rate': calculate_hit_rate(),
        'key_count': keyspace.get('db0', {}).get('keys', 0)
    }
Cache Eviction Problems:
# Implement intelligent cache eviction
def smart_cache_cleanup():
    # Remove expired entries first
    expired_keys = redis_client.scan_iter(match="cache:*")
    for key in expired_keys:
        if redis_client.ttl(key) <= 0:
            redis_client.delete(key)
    
    # Remove least recently used entries if memory pressure
    if get_memory_usage() > MEMORY_THRESHOLD:
        lru_keys = get_lru_keys(limit=100)
        redis_client.delete(*lru_keys)

Best Practices Summary

  1. Enable Semantic Caching - Implement for all LLM interactions to achieve 10x performance improvements
  2. Monitor Resource Usage - Set up comprehensive monitoring for proactive optimization
  3. Scale Horizontally - Use Kubernetes HPA to handle variable workloads
  4. Optimize Database Queries - Regular query analysis and index optimization
  5. Implement Circuit Breakers - Prevent cascade failures during high load
  6. Use Connection Pooling - For all external service connections
  7. Regular Performance Testing - Load test major releases and configuration changes
  8. Cache Warm-up - Pre-populate caches during deployment
  9. Graceful Degradation - Implement fallbacks for service unavailability
  10. Capacity Planning - Monitor growth trends and scale infrastructure proactively
By following these performance optimization strategies, you can significantly improve Simba Intelligence’s response times, reduce infrastructure costs, and provide a better user experience for data engineers and analysts using the platform.